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Abstract

The explosive growth of video traffic on today’s Internet pro-
motes the rise of Neural-enhanced Video Streaming (NeVS),
which effectively improves the rate-distortion trade-off by
employing a cheap neural super-resolution model for qual-
ity enhancement on the receiver side. Missing by existing
work, we reveal that the NeVS pipeline may suffer from a
practical threat, where the crucial codec component (i.e., en-
coder for compression and decoder for restoration) can trig-
ger adversarial attacks in a man-in-the-middle manner to sig-
nificantly destroy video recovery performance and finally in-
curs the malfunction of downstream video perception tasks.
In this paper, we are the first attempt to inspect the vul-
nerability of NeVS and discover a novel adversarial attack,
called codec hijacking, where the injected invisible perturba-
tion conspires with the malicious encoding matrix by reorga-
nizing the spatial-temporal bit allocation within the bitstream
size budget. Such a zero-day vulnerability makes our attack
hard to defend because there is no visual distortion on the re-
covered videos until the attack happens. More seriously, this
attack can be extended to diverse enhancement models, thus
exposing a wide range of video perception tasks under threat.
Evaluation based on state-of-the-art video codec benchmark
illustrates that our attack significantly degrades the recov-
ery performance of NeVS over previous attack methods. The
damaged video quality finally leads to obvious malfunction
of downstream tasks with over 75% success rate. We hope to
arouse public attention on codec hijacking and its defence.

Introduction
Driven by the remarkable surge of today’s Internet video
traffic, the Neural-enhanced Video Streaming (NeVS) (Yeo
et al. 2022; Liu et al. 2021; Dasari et al. 2022) has emerged
as a fundamental infrastructure to accommodate modern
video-centric services across the network, including Zoom
meeting (Zoom 2023), tiktok short-form videos (TikTok
2023) and YouTube live (YouTube 2023). As shown in Fig-
ure 1, the NeVS pipeline involves the collaboration between
two sides. On the content delivery side (i.e., the client),
raw data are downscaled from original high-resolution (HR)
frames into low-resolution (LR) ones and encoded into a
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compressed video for network transmission in streaming.
On the content receiver side (i.e., the server), the compressed
video is fed into a cheap neural super-resolution (SR) model
for quality enhancement (Yeo et al. 2022; Zhang et al. 2022;
Nguyen et al. 2022; Wang et al. 2022). The final restored
HR video holds adequate visual quality as the original ver-
sion, and thus can be applied for video analytics in different
downstream tasks. Such a pipeline greatly improves the rate-
distortion trade-off, i.e., reducing streaming traffic while not
incurring a quality drop of the restored video, which is the
core objective of NeVS systems.

Recently, optimizing the pipeline of NeVS has become
a hot topic, such as improving the encoder-decoder (i.e.,
codec) efficiency (Du et al. 2022; Dasari et al. 2022), reduc-
ing steaming latency (Yeo et al. 2018) and elaborating SR
enhancement (Zhang et al. 2021; Nguyen et al. 2022). How-
ever, its security vulnerability has not been well explored.
Missing by existing work, we reveal that NeVS easily suffers
from a practical threat, where the crucial video codec com-
ponent can trigger the adversarial attack to greatly destroy
the restored video quality and finally cause the malfunction
of downstream perception tasks.

Nevertheless, launching a successful adversarial attack
on NeVS is not easy. Most existing works either rely on
completely image-level perturbation (Wei et al. 2022; Yue
et al. 2021) or deteriorate the video model accuracy based
on specific vision tasks (Chen et al. 2022; Jia et al. 2021;
Hwang et al. 2021). They fail to NeVS due to the unaware-
ness of video codec. Essentially, the codec handles the video
frames by allocating most bits to low-frequency information
while compressing the high-frequency ones, so as to obtain
the best balance between video size and restoration quality.
However, previous codec-unaware adversarial attacks usu-
ally add high-frequency perturbation into frames (Yue et al.
2021; Choi et al. 2022). In this case, the encoding procedure
serves as a noise filter to remove the injected perturbation,
making conventional attacks fail to NeVS. This insight is
also verified by our preliminary experiments (in Figure 3)
and inspires us to build a codec-aware adversarial attack.

This paper is the first work to holistically inspect the
vulnerability of NeVS and we discover a novel adversar-
ial attack, called codec hijacking. Codec hijacking can be
launched by controlling two factors: (1) searching and in-
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Figure 1: The overview of NeVS pipeline, including downscaling, video codec (encoder+decoder) and neural SR enhancement.

jecting invisible perturbation on LR frames before video
encoding, (2) controlling the macroblock-level (i.e., patch)
Quantization Parameter (QP) (Schwarz, Marpe, and Wie-
gand 2007) matrix to generate malicious encoding, which
conceals the injected perturbation in normal circumstances
but can trigger the attack to significantly damage the qual-
ity of restored HR videos. We reveal that only jointly opti-
mizing these two factors can successfully attack the NeVS
pipeline. Codec hijacking camouflages the injected pertur-
bation as common noise and triggers the attack only when
invoking the malicious encoding. By invoking codec hijack-
ing, the adversary can expose the entire NeVS system to a
catastrophic zero-day vulnerability, which is hard to defend
because there is no visual distortion on the restored video
until the attack happens. Extensive experiments based on the
typical UDM10 (Yang et al. 2019) benchmark demonstrate
that codec hijacking significantly deteriorates the restoration
performance of NeVS using different SR models, and finally
results in downstream task malfunction with over 75% suc-
cess rate, including multiple object tracking and human pose
estimation. Overall, our key contributions are as follows.

• Novel and critical attack on NeVS pipeline. To the best
of our knowledge, we are the first to study the vulnerabil-
ity in NeVS. We discover a novel attack paradigm, codec
hijacking, to effectively break the rate-distortion trade-
off between quality preservation and traffic saving.

• Covert and effective trigger inside codec. We reveal
that the codec component conceals the vulnerability and
can trigger adversarial attacks to significantly degrade the
recovered video quality without visual distortion on the
intermediate frames. This attack paradigm captures the
essentials of video streaming, i.e., spatial-temporal en-
coding for frame bitrate controlling, to successfully fool
the entire streaming pipeline, which cannot be achieved
by transferring existing image-based attacks to videos.

• Ubiquitous threat to diverse video perception tasks.
The proposed attack paradigm is hard to defend due to its
zero-day vulnerability property. Extensive experiments
show that diverse SR enhancement models and video per-
ception tasks are vulnerable to such attacks, thus requir-
ing public attention on its defence.

Preliminary
We first introduce the NeVS pipeline. Then, we briefly re-
view conventional codec-unaware adversarial attacks and
discuss why they fail to NeVS via preliminary experiments.

Neural-enhanced Video Streaming
With the unprecedented boom of low-end devices (e.g., mo-
bile phones and IoT sensors), data are continuously gener-
ated on the client side and transmitted from the client to
server (Huang et al. 2020). Video streaming enables the
server to utilize videos and conduct analytics in real-time
without having to completely receive all the frames. The
contents of video streaming include live broadcasts, virtual
conferences, YouTube user-generated content, surveillance
and manufacturing in industry (Zheng, Zuo, and Zhang
2020). However, the video perception tasks require massive
computations that client hardware cannot afford. Therefore,
the raw frames are encoded as videos and then sent to the
remote server for subsequent downstream tasks. To fully re-
duce streaming traffic while preserving the video quality,
it comes to the rise of Neural-enhanced Video Streaming
(NeVS), which significantly improves rate-distortion trade-
off by employing a cheap super-resolution model for qual-
ity enhancement on the server side. As shown in Figure 1,
the core objective of NeVS is to achieve an improved rate-
distortion trade-off, i.e., reducing streaming traffic while
maximizing the restoration quality.

Conventional Adversarial Attacks
Existing adversarial attack works most focus on image-level
perception tasks, i.e., image classification (Wei et al. 2022),
object detection (Tu et al. 2020), semantic segmentation (He
et al. 2020) and super-resolution restoration (Yin et al. 2018;
Choi et al. 2019; Yue et al. 2021), while the threat in videos
has been less explored. When adversarial attack extends to
videos, it is also first explored on video classifiers. Jiang et
al. (Jiang et al. 2019) proposed the first black-box attack uti-
lizing tentative perturbations and Natural Evolution Strate-
gies (NES) to calibrate gradient. Recently, Jia et al. (Jia et al.
2021) explored the black-box attack by utilizing IoU scores
in both current and historical frames. Consequently, most
adversarial attack methods either rely on complete image-
level perturbation or deteriorate the video model accuracy
based on specific visual tasks. As a result, they are unaware
of the impact of video codec to encode the frame sequences
and fail to the scenarios of NeVS.

Adversarial Attacks on NeVS Pipeline
Attack visualization. Attacking the NeVS requires: (1) in-
jecting perturbation into the original LR frame, (2) conduct-
ing malicious encoding to conceal the perturbation and dam-
age the final restored HR frame. We use Figure 2 to visual-
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(a) Original. (b) Perturbation. (c) Attacked. (d) Restored.

Figure 2: Visualization of adversarial attacks via (a) orig-
inal LR frames, (b) image-level perturbation, (c) attacked
LR frames, and (d) restored HR frames, where the rate-
distortion trade-off of SR enhancement is explicitly broken.

ize the perturbation, attacked LR frame and final restored
HR frame for a better understanding of the attack rationale.
Given an original LR frame (Figure 2(a)), we can observe
that the injected perturbation is visually imperceptible (Fig-
ure 2(b)) and it is hard to detect the perturbation by look-
ing at the attacked LR frame (Figure 2(c)). However, after
the neural SR enhancement, the final restored HR frame is
significantly damaged, with unexpected moire textures and
blurs (Figure 2(d)). This kind of distortion not only deterio-
rates the perception experience of human, but also leads to
catastrophic malfunction of downstream tasks.

(a) Codec-unaware attack. (b) Our codec hijacking.

Figure 3: Comparison of the adversarial attack effectiveness
based on the widely-used H.264 and H.265 standard.

Why not existing attack methods? On top of injecting per-
turbation, conducting malicious encoding is the key to suc-
cessfully launching the attack on NeVS, i.e., video codec is
the essential trigger. We conduct preliminary experiments
in Figure 3 to verify an important point: existing codec-
unaware attack methods fail to NeVS scenarios. Here is a
control group with two frames. The frame in Figure 3(a)
follows the codec-unaware attack scheme by solely inject-
ing image-level perturbation. Meanwhile, the frame in Fig-
ure 3(b) injects the same perturbation while launching the
proposed codec hijacking to conduct malicious encoding.
We can observe that Figure 3(a) still holds good visual qual-
ity while Figure 3(b) is significantly damaged. The results
motivate us to capture the impact of video codec and estab-
lish a codec-aware adversarial attack to truly deteriorate
the NeVS pipeline.

Methodology: Codec Hijacking
Observing the vulnerability of the NeVS pipeline, we dis-
cover a novel adversarial attack by exploiting the video
encoder-decoder (i.e., codec) procedure, which is named
codec hijacking. Codec hijacking is launched by two
steps: (1) searching and injecting invisible perturbation
into LR frames before video encoding, (2) controlling the
macroblock-level (i.e., patch) QP matrix to generate mali-
cious encoding, which conceals the injected perturbation in
normal circumstances but can trigger the attack to signifi-
cantly damage the quality of restored HR videos. It is worth
noting that solely injecting perturbation without the coordi-
nation of malicious encoding cannot bring distortion to the
final restored video – video codec is the trigger. This in-
dicates that the adversary can successfully camouflage the
injected perturbation as common noise by using normal en-
coding instead of the malicious version, thus deceiving the
NeVS system that there is no risk of adversarial attacks.

Formulation of Attack Pipeline
Given the entire video frame set X, we use Xi to denote an
original raw HR frame with index i, where Xi ∈ X and i
identifies the sequence order for video encoding. For yield-
ing less streaming traffic, a downscaling module is adopted
to shrink the spatial size of Xi and transfer it as an LR frame
xi, e.g., from 1920× 1080 pixels to 480× 270 pixels with a
4× scaling ratio. We describe the downscaling procedure as
xi = Downscale(Xi). Then, the proposed codec hijack-
ing calculates the most effective perturbation δi and injects
it into xi to generate the semi-attacked LR frame x̂i. Note
that the injected perturbation should be visually impercep-
tible, which means the similarity gap between xi and x̂i is
bounded by the L∞-norm constraint, i.e., ∥xi − x̂i∥∞ ≤ α,
where α is the distortion upper bound following the Itera-
tive Fast Gradient Sign Method (I-FGSM) (Kurakin, Good-
fellow, and Bengio 2017; Choi et al. 2019) update rule.

By conducting malicious video encoding on x̂i, codec hi-
jacking generates the fully-attacked LR video and transmits
its bitstream through the network. The server receives the
compressed LR video streaming, decodes and feeds it into
the SR model for quality enhancement. As codec hijacking
has triggered the malicious encoding based on perturbation
injection, the restored HR video generated by the SR model
will be significantly destroyed, usually with moire textures
and blurs. This catastrophic deterioration of restoration qual-
ity breaks the rate-distortion advantages of NeVS systems.

From each downscaled LR frame x to the final restored
HR video, the attack procedure on NeVS can be formulated
as: f(x; δ,Q) = SR(Decode(Encode(x; δ,Q))), where
δ and Q represent the injected perturbation and malicious
encoding, respectively. Only simultaneously optimizing the
perturbation δ and encoding Q can successfully launch the
adversarial attacks of codec hijacking. Given a frame in-
dex i, we can use f(xi) and f(xi; δi,Qi) to denote the
frames of the final restored HR video, in normal and attacked
NeVS, respectively. Thus, the objective of codec hijacking
is to maximize distortion (i.e., minimize similarity) of the
frames inside the restored HR videos, which is defined as
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Figure 4: The overview of how codec hijacking launches a man-in-the-middle adversarial attack on the NeVS pipeline, which is
established upon modern codec protocols, including H.264/AVC, H.265/HEVC and H.266/VVC. Thus, the codec information
can be accessed by probing original LR videos, such as using “ffprobe” (ffprobe 2023), and the attacker can easily control QP
by using the standard built-in APIs provided by the codec protocols.

min : Sim(f(x), f(x; δ,Q)), where Sim is the similarity
function between normal and damaged frames. Optimizing
the above target requires (1) searching perturbation δ and (2)
conducting malicious encoding Q.

Iterative Search of Segment Perturbation
Indeed, injecting independent perturbation for each frame
can provide best the attack effectiveness. This frame-wise
calculation will yield a huge computation overhead that may
break the real-time streaming requirements. We need to ob-
tain the perturbation in a relatively coarse-grained manner.
In modern video codecs (e.g., H.264/AVC (H.264 2023) and
H.265/HEVC (H.265 2023)), a video is usually encoded as a
series of segments, each of which is a group of frames with
three types: I-, P- and B-frames (Ding et al. 2021). Encod-
ing videos into segments can help to refresh video quality
and recover from bitstream errors. Therefore, we treat a seg-
ment as the basic unit for searching perturbation. All the LR
frames belonging to the same segment share the perturba-
tion. This helps codec hijacking achieve a good trade-off be-
tween perturbation effectiveness and computation overhead.

Given a segment Sj with index j, we assume that there are
N frames inside this segment, where the n-th frame is de-
fined as xn. With the segment perturbation δj , we can obtain
the attacked LR frame x̂n as: x̂n = Clip0,1(xn+δj), where
the clipping function Clip is defined as: Clipa,b(X) =
min(max(X, a), b). By analyzing the visual characteristics
of the entire segment, we measure the average frame distor-
tion caused by segment perturbation δj as:

L(δj) =
1

N

N∑
n=1

Sim(f(xn), f(xn; δj ,Qn)). (1)

Following the principle of I-FGSM (Kurakin, Goodfel-
low, and Bengio 2017; Choi et al. 2019) mentioned above,
we can initialize δ0j by a Gaussian distribution noise and it-
eratively optimize the global perturbation as:

δt+1
j = Clip−α,α

(
δtj +

α

T
sign∇L(δtj)

)
, (2)

where the superscript t, T and sign∇L(.) represent the it-
eration index, the maximum number of iterations and the

sign of the gradient, respectively. We stop the optimization
procedure at iteration index T and generate the final seg-
ment perturbation δTj . Note that the distortion upper bound
α restricts the maximum degree of segment perturbation and
avoids noticeable changes on the attacked LR frames.

Malicious Encoding via QP Matrix Controlling
For video size compression, the encoder adopts the intra-
and inter-frame prediction to remove both spatial and tem-
poral redundancy of the frames, which follows the classi-
cal predictive coding paradigm (Li, Li, and Lu 2021; Jiang
et al. 2022) on frame residuals. To estimate the motion vec-
tor across frames, each frame is resolved into a series of
macroblocks, i.e., usually a patch with 16× 16 pixels (some
fine-grained estimation may use 8×8 or 4×4 patches). These
macroblocks serve as the basic units for encoding and can be
organized as a 2D matrix to represent the entire frame, where
each macroblock separately corresponds to a spatial region.

Based on the residual prediction and motion estimation,
the encoding procedure can transfer the frame from spatial
space to frequency space, where the Discrete Cosine Trans-
form (DCT) (Ding et al. 2021; Liu et al. 2020) and its vari-
ants are widely adopted. With such a transformation, the
encoding procedure tends to allocate most bits to the mac-
roblocks with low-frequency coefficients and compress the
high-frequency information. As previous codec-unaware ad-
versarial attacks usually add high-frequency perturbation to
the input frames (Yue et al. 2021; Choi et al. 2022), the en-
coding procedure serves as a noise filter and smooths the
image-level perturbation injected in frames, making conven-
tional attack methods fail to NeVS scenarios. Recall the pre-
liminary experiments in Figure 3, simply adopting vanilla
encoding (e.g., H.264/AVC (H.264 2023) and H.265/HEVC
(H.265 2023)) cannot successfully launch the adversarial at-
tacks on NeVS, where the final restored HR frames only
suffer from a tiny distortion on the visual quality. This phe-
nomenon requires us to hijack the encoding procedure and
conceal the injected perturbation.

Actually, the macroblock-wise bit allocation is a kind of
data quantization and is controlled by the Quantization Pa-
rameter (QP), which is the index used to derive a scaling
matrix (Schwarz, Marpe, and Wiegand 2007). In the widely-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17126



Algorithm 1: Distortion-oriented QP Matrix Controlling
Input: original HR frame X , bitstream size budget B.
Output: adversarial pair of < Q, δ >.

1: epochs← E; ▷ Set the maximum epochs.
2: S ← 32; ▷ Set the initial QP controlling stride.
3: Q ← 0; ▷ Uniformly initialize QP matrix.
4: x← Downscale(X); ▷ Interpolation, e.g., bicubic.
5: L∗

codec ← Sim(f(x), X); ▷ Vanilla codec’s distortion.
6: L∗

atk ← 0; ▷ Initial distortion by attack.
7: while epochs do
8: flag ← TRUE; ▷ A flag for reducing search stride.
9: for mk ∈ x using zigzag scanning do

10: if qk + S ≤ 51 then ▷ Current stride is feasible.
11: qk ← qk + S; ▷ Increase the QP value.
12: Get bitstream size v with current QP matrix;
13: if v ≥ B then ▷ Bitstream size control.
14: continue; ▷ The bitstream is oversize.
15: Lcodec ← Sim(f(x), X);
16: Search perturbation δ by using Eq. (2);
17: Latk ← Sim(f(x), f(x; δ,Q);
18: if Lcodec ≤ L∗

codec and Latk ≥ L∗
atk then

19: L∗
atk ← Latk; ▷ Accept QP adjustment.

20: flag ← FALSE; ▷ Retain stride.
21: else
22: qk ← qk − S; ▷ Reject and reset QP.
23: else ▷ No adjustment space under current stride.
24: continue; ▷ Adjust the next macroblock.
25: if flag is TRUE then
26: S ← S/2; ▷ Reduce the search stride.
27: if S < 1 then
28: break; ▷ Stop when stride is smaller than 1.
29: epochs← epochs− 1; ▷ Remaining epochs.
30: return < Q, δ >;

used H.264 and H.265 encoding, QP ranges from 0 to 51.
Given a macroblock, the lower the QP is, the more bits
will be allocated to it, thus with better visual quality. How-
ever, a lower QP value will also lead to a larger bitstream
size of the macroblock. Therefore, the essential to make a
good rate-distortion trade-off inside NeVS is to determine
a proper bit allocation strategy on each macroblock. This
property inspires us to generate malicious encoding by con-
trolling the macroblock-wise QP matrix, which directly im-
pacts how much perturbation can remain after encoding. We
called this procedure the distortion-oriented QP matrix con-
trolling. Given a clean frame x inside a segment and its bit-
stream size budget B, our objective is to find the most effec-
tive adversarial pair < Q, δ >, i.e., the malicious encoding
matrix and the corresponding perturbation, to successfully
launch the adversarial attack. We use Algorithm 1 to de-
scribe the rationale of QP matrix controlling based on the
widely-used H.264 and H.265 standards.

Assuming a downscaled LR frame x is divided as K mac-
roblocks, we denote a macroblock and its QP value as mk

and qk, respectively, with the macroblock index k. The en-
tire QP matrix corresponding to x is denoted asQ. Each LR
frame holds an individual QP matrix, which is iteratively op-

timized to maximize the visual distortion to the final restored
HR frame. Here, the algorithm ensures two requirements.
The first is to figure out all potential QP matrices that the
final restored HR frame holds adequate visual quality as the
origin HR one (the left condition in line 18). This guaran-
tees that solely adopting malicious encoding of QP matrix
without perturbation will not bring perceptible differences.
The second is simply injecting perturbation without mali-
cious encoding still cannot successfully bring visual dete-
rioration, consistent as the observation in preliminary ex-
periments. This property makes the perturbation hidden in
the frame, thus is hard to defend. However, once we con-
duct malicious encoding and perturbation injection simulta-
neously, the final restored HR frames will be significantly
damaged, compared with the restoration from clean one (the
right condition in line 18). Since the bitstream size budget
is maintained (in line 13), the video delivery system cannot
detect this attack by checking the streaming bitrate, which
effectively improves the attack success rate. By scanning all
the frames, we can conduct malicious encoding on the entire
video and make codec hijacking as the trigger for adversarial
attacks. Note that we use binary search to restrict the compu-
tational complexity of Algorithm 1 as O(K×log2 S), where
K and S represent the macroblock number inside the frame
and the initial QP controlling stride, respectively. Conse-
quently, the QP matrix controlling algorithm makes codec
hijacking fast enough to attack the NeVS pipeline.

Experiments
Experimental Setups
NeVS benchmark and enhancement models. We employ
the typical UDM10 (Yang et al. 2019) benchmark, cover-
ing the downstream tasks of object tracking and human pose
estimation. The video codecs are based on the widely-used
H.264/AVC (H.264 2023) and H.265/HEVC (H.265 2023)
standards. Thus, the bitstream size budget (upper bound)
is the size achieved by vanilla codecs on clean data, with
constant QP 23, medium preset, and yuv420p pixel format.
As to the video enhancement module, we consider 11 typ-
ical super-resolution models with diverse architectures and
parameter sizes, including EDSR (Lim et al. 2017), EUSR
(Choi et al. 2020), DBPN (Haris, Shakhnarovich, and Ukita
2018), RCAN (Zhang et al. 2018), MSRN (Li et al. 2018),
4PP-EUSR (Choi et al. 2020), ESRGAN (Wang et al. 2018),
RRDB (Wang et al. 2018), CARN (Ahn, Kang, and Sohn
2018), FRSR (Soh et al. 2019) and NATSR (Soh et al. 2019).
These models covers both image-level and video-level SR
enhancement. For example, the methodologies of ESRGAN
and EDSR can be extended into the design of video-wise
SR models, including BasicVSR (Chan et al. 2021) and Ba-
sicVSR++ (Chan et al. 2022). Therefore, the selection of SR
models matches the realistic deployment of NeVS systems.
Attack baselines and performance measurement. We in-
spect the robustness of the NeVS against our codec hijack-
ing by measuring the frame similarity, using metrics of Peak
Signal-to-noise Ratio (PSNR) and Structural Similarity In-
dex Method (SSIM). To check the invisible perturbation,
we measure the similarity between the clean and attacked
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(a) Raw HR frame (ground truth). (b) EDSR. (c) EUSR. (d) DBPN.

(e) RCAN. (f) MSRN. (g) 4PP-EUSR. (h) ESRGAN.

(i) RRDB. (j) CARN. (k) FRSR. (l) NATSR.

Figure 5: Visual comparison of restored HR frames when launching codec hijacking on different SR enhancement models. The
raw HR frame describes that a man is adjusting the photography equipment in a room, with shelves in the background.

LR frames. To check the restoration quality, we measure
the similarity between the HR frames restored from clean
and attacked LR frames. As to the comparison of attack ef-
fectiveness between codec hijacking and previous methods,
we take three typical baselines: Iterative Fast Gradient Sign
Method (I-FGSM) (Choi et al. 2019) Projected Gradient De-
scent (PGD) (Madry et al. 2018) and Feature Disruptive At-
tack (FDA) (Ganeshan, S., and Radhakrishnan 2019). We
also inspect how codec hijacking impacts the average pre-
diction accuracy of downstream tasks. The attack success
rate (%) measures the probability when the accuracy with
attacks is at least half lower than that without attacks.

Attacked Frames Restored Frames

Model PSNR SSIM PSNR SSIM

EDSR 43.06 0.9979 20.97 0.6043
EUSR 35.87 0.9935 20.05 0.5145
DBPN 39.44 0.9949 20.67 0.5667
RCAN 45.32 0.9987 21.01 0.6127
MSRN 41.41 0.9971 19.89 0.5239
ESRGAN 33.90 0.9829 14.13 0.2276
RRDB 32.52 0.9773 20.22 0.5303
CARN 33.99 0.9822 20.96 0.5679
FRSR 35.84 0.9934 19.13 0.4749
NATSR 35.81 0.9933 19.41 0.4848

Table 1: The attacks are hard to detect since there are no
perceptible changes on the attacked LR videos.

Attack Impacts on Video Restoration Quality
We inspect how codec hijacking impacts the NeVS perfor-
mance under different enhancement models. As shown in
Table 1, we compare the frame similarity before and af-
ter codec hijacking, by checking the attacked LR frames
and restored HR frames, respectively. The similarity mea-
surement covers the L2-based PSNR and human-perception-
oriented SSIM. After perturbation injection, the attacked
LR frames hold high similarity to the original clean ones,
indicating that perturbation injection brings imperceptible
changes to the frame content and cannot be detected vi-
sually. However, the final restored frames are significantly
damaged with huge similarity deterioration, especially to the
GAN-based models (e.g., ESRGAN and NATSR). This is
because these methods often generate high-frequency infor-
mation to enhance visual content, where the injected per-
turbation is amplified by codec hijacking. This phenomenon
is best to understand by checking the visual comparison in
Figure 5. Compared with the original clean frame, the re-
stored frames in 11 enhancement models consistently suffer
from fatal quality distortion, with unexpected moire textures
and blurs. This type of distortion not only compromises the
visual experience for humans but also eventually results in
catastrophic malfunctions of downstream tasks.

Attack Impacts on Downstream Tasks
Apart from the visualization of codec hijacking’s attack ef-
fectiveness, we further demonstrate how the damaged HR
videos mislead downstream perception tasks, i.e., multiple
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object tracking and human pose estimation. We take ESR-
GAN as the SR example for illustration purposes.

Setting Pedestrian Station Market Street

Original 82.9 83.4 79.5 80.3
Attacked 41.2 37.8 31.7 33.2
Success Rate 79.3 81.9 75.1 76.7

Table 2: Malfunction of object tracking on MOTA (%).

Multiple object tracking. Table 2 shows the performance
comparison based on the challenging Multiple Object Track-
ing dataset (MOTChallenge 2023), where the key metric
is Multiple Object Tracking Accuracy (MOTA) (Bernardin
and Stiefelhagen 2008). Overall, codec hijacking breaks the
model accuracy with over 75% attack success rate.

Setting Head Elbow Wrist Knee Ankle

Original 97.8 90.2 87.1 96.5 91.9
Attacked 38.2 34.8 32.3 36.4 33.7
Success Rate 84.1 85.6 86.7 82.9 83.3

Table 3: Malfunction of human pose estimation on PCK (%).

Human pose estimation. We deploy human pose estimation
on the Human3.6M dataset, with 3.6 million video frames.
The key metric is Percentage of Correct Keypoints (PCK)
(Yang and Ramanan 2013). As shown in Table 3, codec hi-
jacking significantly deteriorates the estimation accuracy of
different skeleton joints, with over 82% attack success rate.

Ablation Studies
Comparison of attack effectiveness. We compare the at-
tack effectiveness between our codec hijacking and the base-
lines. As shown in Figure 6, we can observe that all the base-
lines fail to damage the restored video frames, where slight
moire textures and blurs exist. This is because these base-
lines cannot adapt to the inherent codec of NeVS, which
serves as a high-frequency noise filter to remove the injected
perturbation. In contrast, our codec hijacking (Figure 6(e))
can retain the perturbation by controlling the QP matrix, thus
finally degrading the restoration quality. Note that codec hi-
jacking will also be almost deactivated if we remove the ma-
licious encoding procedure (Figure 6(f)). This comparison
verifies our insight that being aware of video codec is the
key to successfully launching adversarial attacks on NeVS.
Computational efficiency and time cost. In practice, the
adversary can launch codec hijacking to tamper with the LR
videos before streaming to the server. Although this attack
occurs in the data preparation stage and is not time-sensitive,
we still restrict the computational overhead of the attack al-
gorithm in two aspects. First, instead of searching for in-
dependent perturbation for each frame, we capture the inter-
frame similarity and make frames belonging to the same seg-
ment share the perturbation. As the segment number is much
smaller than the frame number (often in a ratio of 1/100),
searching segment-level perturbation is fast. Second, we use

(a) Ground truth. (b) I-FGSM.

(c) PGD. (d) FDA.

(e) Codec hijacking (ours). (f) Ours w/o malicious encoding
of QP matrix controlling.

Figure 6: The vulnerability comparison between previous at-
tack methods and codec hijacking. Zoom in for best view.

binary search to restrict the computational complexity of
QP controlling in each segment as O(K × log2 S), where
K and S represent the macroblock number (e.g., in hun-
dred scales for 1080p) and the initial QP controlling stride
(e.g., often a constant of 32), respectively. Thus, the entire
computational overhead of the attack algorithm is light, e.g.,
less than 300ms for a 10-second standard 1080p video. This
time cost is feasible for most video-centric applications, es-
pecially when compared with the inherent video encoding
process, which is 30−40× slower than the attack algorithm.

Conclusion
NeVS has become a fundamental infrastructure to handle
video perception applications across the network, where its
robustness has not been well explored by previous work.
This paper is the first attempt to inspect the vulnerability
of NeVS. It reveals that the inherent codec can be the es-
sential trigger to launch covert adversarial attacks, which
significantly break the rate-distortion advantages of NeVS.
We discover a novel and codec-aware adversarial attack,
called codec hijacking, which jointly optimizes the pertur-
bation injection and malicious encoding to launch a success-
ful attack, by exploiting the spatial-temporal prediction and
macroblock bit-rate controlling inside the codec component.
Codec hijacking exposes the streaming pipeline to a catas-
trophic zero-day vulnerability, which is hard to defend be-
cause there is no visual distortion on the restored video until
the attack happens. Evaluations show that codec hijacking
explicitly deteriorates the video restoration quality and leads
to the malfunction of diverse downstream perception tasks.
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